skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zaremsky, Matthew_C B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce “braided” versions of self-similar groups and Röver–Nekrashevych groups, and study their finiteness properties. This generalizes work of Aroca and Cumplido, and the first author and Wu, who considered the case when the self-similar groups are what we call “self-identical.” In particular, we use a braided version of the Grigorchuk group to construct a new group called the “braided Röver group,” which we prove is of type$$\operatorname {\mathrm {F}}_\infty $$. Our techniques involve using so-calledd-ary cloning systems to construct the groups, and analyzing certain complexes of embedded disks in a surface to understand their finiteness properties. 
    more » « less